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Introduction: random graphs and SIR processes

parameter sensitivity on a four-layer random graph model with cliques
of �xed size

parameter estimation on a two-layer random graph with preferential
attachment dynamics



SIR process on a random graph

Agent-based epidemic model; the connections between the individuals
are chosen randomly
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Real networks

A network of work relationships
Source: http://develop-project.eu/



Epidemic spread on random networks

An SIR model on 10000 vertices, with 100 simulations, on di�erent random
graph models
source: Keeling, Eames, Networks and epidemic models, 2005



Random graph models

Erd®s�Rényi model (1959): each pair is connected independently with
the same probability

preferential attachment models (e.g. Barabási�Albert model, 1999): in
a randomly growing network, "popular" vertices have higher chance to
get new neighbors

con�guration model (Bollobás, 1981): we �x the degree distribution
(e.g. the proportion of vertices with 5 neighbors is 3%), then we choose
a graph uniformly at random

geometric random graphs: vertices are embedded in the plane, and
vertices that are closer to each other have higher chance to be connected

random hypergraphs: groups of vertices are chosen randomly, to rep-
resent groups of people with strong interactions
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A random multilayer model

Goal: to �nd e�ective social distancing strategies in a model which does not
contain too many parameters, but captures the most important features of
the group structure of the society.

Related work:

F. Ball, D. Mollison, G. Scalia-Tomba, Epidemics with two levels of

mixing, 1997.

G. Bianconi, Multilayer networks: structure and function, 2018.

A. Aleta et al., Modelling the impact of testing, contact tracing and

household quarantine on second waves of COVID-19, 2020.



A random multilayer model

Imagine a city of 5000 individuals in three age groups (children, adult,
retired).

households: sizes chosen according to the 2011 census in Hungary

workplaces: groups of 10 adult people, chosen randomly

schools: groups of 200 children, partitioned into 20 "classes" of size
10 with stronger relationships

spatial structure of the households: a grid with an additional dense
part

casual contacts (e.g. shops, playgrounds), depending on the spatial
structure (capacity: 200, size of sta�: 10)
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A random multilayer model

A caricature of the multilayer network where the building blocks are house-
holds (see green sets in the left panel) which are placed on or act as nodes
in a square lattice which mimics spatial proximity



Parameters

households in a 40× 40 grid (approximately 4000 individuals)

infection rate at home: 1

within school classes and at workplaces: 1

infection rate between school classes, within the same school: 0.2

infection rate between neighbors: 0.1

infection rate of casual contacts: 0.1

We ran an SIR model, realized by a Gillespie algorithm.



E�ect of the population size

The evolution of the proportion of infected and recovered individuals by
changing the size of the population (nr is the size of the grid); the size of
the population is approximately 4000, 6000, 8500 and 12000 in the four cases
respectively.



Comparison to compartment models

The behavior of the maximal proportion of infected individuals and the �nal
proportion of recovered individuals for the random multilayer graph model
with random parameters (dots) and for the corresponding compartment mo-
del (red curve); the graph model has higher peaks



Comparison to compartment models

Ṡ(t) = −βI (t)
S(t)

N
, (1)

İ (t) = βI (t)
S(t)

N
− γI (t), (2)

Ṙ(t) = γI (t), (3)

where β and γ denote the infection and recovery rates and N is the size of
the population.

The ratio x = R∞/N satis�es the equation

1− x = e−xR0 , (4)

where R0 = β/γ is the basic reproductive ratio.

In addition,

Imax = N − S − R = N − N

R0

− N

R0

ln(R0).

This leads to a connection between Imax/N and R(∞)/N.



The role of the schools in this model

By decreasing the infection rates at schools (both within and between
school classes, with the same factor) we can signi�cantly reduce the num-
ber of infected individuals.

Recall that children has the largest contact
number in this model.
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The e�ect of the size of classes

Decreasing the size of the classes does not help much.



The e�ect of the connections between classes

Separating classes completely signi�cantly helps: a school with completely
separated cliques in not much worse than a closed school (in this model).



The e�ect of size of workplaces

Most workplaces are already separated from each other, but some of them
are the sta� of shops etc. ⇒ workplace size has a larger e�ect than the size
of the classes.



The e�ect of infection intensity for neighbors

The epidemic has a higher peak on the random graph model than in the
compartment model.



Parameter estimation in the case of a two-layer random

graph model
A two-layer model with a di�erent structure:

First layer: households, complete graphs of a �xed size

Second layer: preferential attachment random graph, independent of
the �rst layer (polynomial model of Ostroumova, Ryabchenko and Samosvat
(2013), when the new vertex n + 2 is added:

With probability ppa, we choose two vertices independently from the
vertices {1, . . . , n}, with probability proportional to their in-degree (pre-
ferential attachment component), and connect a new edge to these ver-
tices.

With probability pu, we choose two vertices independently from the
vertices {1, . . . , n + 1}, with equal probability (uniform component),
and connect a new edge to these vertices.

With probability ptr, we choose a random edge of Gn uniformly, and
connect a new edge to both of its endpoints.
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Parameter estimation based on the number of SI edges

Suppose that the recovery rate is known, γ = 1, and we would like to
estimate the infection rate τ . A general maximum likelihood estimate is as
follows, if the number of SI edges is exactly known:

τ̂ =
zI∫ T

0
ESI
t dt

=
zI∑

ti<T ESI
ti (ti − ti−1)

,

where

zI is the total number of events when a vertex gets infected;

ESI
t is the number of SI edges (edges with one susceptible and one

infected endpoint).



Parameter estimation based on the number of SI edges

The estimate converges quickly to the real parameter τ , for all parameter
sets. Each curve is the average of 25 simulations.



Estimating the number of SI edges between households

Suppose that the recovery rate is known, γ = 1, and we would like to
estimate the infection rate τ . We used the following estimate of the SI
edges between households:

ÊSI ,o
t = It ·

(
d − wd

wd + Nhh − 1

)
· St
N
,

where

d is the average degree of a vertex outside its household;

Nhh is the size of households;

N is the size of the population;

It and St are the number of infected and susceptible individuals at time
t;

w is the weight of the edges between households.



Parameter estimation

The estimate depends on the weight of the preferential attachment compo-
nent in the random graph model. Each curve is the average of 25 simulations.



Parameter estimation

The estimate does not really depend on the weight of the triangle component
in the random graph model. Each curve is the average of 25 simulations.



Conclusions
In our model,

the epidemic curve in a multilayer random graph model can have
a higher peak than the corresponding compartment model shows

if everyone meets the same people every day, separating these
cliques (bubbles) can be almost as e�cient as a full lockdown

the size of these cliques can have a signi�cant e�ect, but not in
every situation

the structure of the graph, especially the preferential attachment com-
ponent has a signi�cant e�ect on the epidemic spread and on the est-
imates on the infection rate

Future plans

vaccination strategy: is it worth vaccinating members of households,
workplaces etc. together?

how can we give better estimates for the parameters, e.g. using neural
networks?
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